

Structure/Odor-Relationships of Longifolene Derived Esters

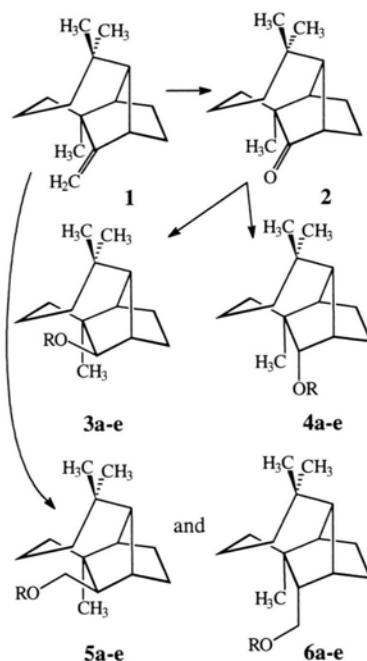
Helmut Spreitzer*, Andrea Pichler, Iris Piringer, Rainer Wolf

Institute of Pharmaceutical Chemistry, Althanstrasse 14, A-1090 Wien

Z. Naturforsch. **53c**, 139–140 (1998); received December 5/December 30, 1997

Structure/Odor-Relationships, Longifolene

A series of epimeric esters of longicamphenilol and longifolol are prepared and their odorous properties described. It is shown that there are significant differences between the exo- and endo-series. All esters are well accessible starting from longifolene.


Introduction

The sesquiterpene (+)-longifolene (**1**) represents an ideal natural source for the industrial production of modern flavor and fragrance compounds (Ohloff, 1994). It has been found widely distributed and can be produced commercially even in hundred ton quantities, mainly from Indian turpentine oil. Starting from (+)-longifolene (**1**) at least four flavors are commercially available. From (-)-isolongifolene (Dev, 1981), which can be obtained by isomerisation of **1**, about thirteen flavors are industrially produced (Ohloff, 1994). These facts were the cause of the following study on structure/odor relationships. We focused our interest to the olfactory properties of a series of epimeric esters of (-)-exo- and (-)-endo-longicamphenilol (**3** and **4**; R=H), (-)-longifolol (**5**; R=H) and (-)-isolongifolol (**6**; R=H), respectively. All these alcohols are easily obtainable from (+)-longifolene (**1**). Furthermore it should be examined whether there are correlations between stereochemistry and odor.

Results and Discussion

Esters of exo- and endo-longicamphenilol

The oxidation of (+)-longifolene (**1**) with KMnO₄ furnishes (-)-longicamphenilol (**2**) (Weyerstahl

3: (-)-exo-longicamphenilol **4:** (-)-endo-longicamphenilol
5: (-)-longifolol **6:** (-)-isolongifolol
 Esters: **(a)** acetate; **(b)** propionate; **(c)** isovalerate; **(d)** acrylate; **(e)** dimethylacrylate.

and Krohn, 1987) which can be reduced with Na/n-propanol (Dalavoy *et al.*, 1987) or LiAlH₄ (Weyerstahl and Krohn, 1987) yielding (-)-endo- or (-)-exo-longicamphenilol (**4** or **3**) respectively. Both epimeric alcohols were converted into the acetate (**3a/4a**), propionate (**3b/4b**), isovalerate (**3c/4c**), acrylate (**3d/4d**) and dimethylacrylate (**3e/4e**) esters. Remarkably the endo-esters (**4a-e**) exhibited a variety of different scents whereas the exo-esters (**3a-e**) were nearly odorless or undefinable (with the exception of **3c**). It seems apparent that the sterical hindrance of the exo-ester group is responsible for the disappointing odorous profile. The pleasant herbal-woody scent of **4a** should be emphasized. Successful development of further longicamphenilol esters therefore seems promising in the endo-series. The odorous properties were summarized in Table I.

Esters of longifolol and isolongifolol

It seems interesting whether there exists a similar pronounced difference in the odorous proper-

Reprint requests to Dr. Spreitzer.
 Fax: 31336771; e-mail: spreitzer@speedy.pch.univie.ac.at.

0939–5075/98/0100–0139 \$ 06.00 © 1998 Verlag der Zeitschrift für Naturforschung. All rights reserved.

D

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

This work has been digitized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

Table I. Odorous properties of the esters of exo- and endo-longocamphenilol, longifolol and isolongifolol.

Compound	Description ^a
3a	not detectable
4a	herbal-woody
3b	not detectable
4b	unpleasant, "metallic"
3c	unpleasant cheese-like, valerian-like
4c	pleasant cheese-like
3d	not detectable
4d	weak cedar-woody
3e	not detectable
4e	not detectable
5a	cedar-woody, animal
6a	not detectable
5b	flowery, cedar-woody
6b	not detectable
5c	weak flowery-sweet
6c	not detectable
5d	strong mushroom-like, garlic-chive-like bynote
6d	unpleasant mushroom-like, sulphurous
5e	anise-like
6e	anise-like

^a For description of odors see Müller and Lamparsky (1991) and literature cited therein.

ties of the esters of the C-1 homologue alcohols (-)-longifolol (**5**) (Lhomme and Ourisson, 1968) and (-)-isolongifolol (**6**) (Zeiss and Arakawa, 1954), respectively. Steric hindrance of the ester group in the homologous series should not differ

Dalavoy V. S., Deodhar V. B. and Nayak U. R. (1987), *7β-Ethynylnorlongifolane from Carbon Tetrachloride Adduct of Longifolene: Synthesis & Reactions*. Ind. J. Chem. **26B**, 5–7.

Dev S. (1981), The Chemistry of Longifolene and Its Derivatives. In: (Herz W., Grisebach H. and Kirby G. W. eds.). *Progress in the Chemistry of Organic Natural Products* **40**, 49–104.

Henecka H. (1952), Methoden zur Herstellung und Umwandlung von Carbonsäureestern. In: *Methoden der org. Chemie (Houben-Weyl)*. (E. Müller ed.), Georg Thieme Verlag, VIII, 503–646.

Lhomme L. and Ourisson G. (1968), Le Longifolène-XIII, Hydroboration du Longifolène. *Tetrahedron* **24**, 3167.

markedly. Surprisingly the esters of the exo-configuration (-)-longifolol (**5a–e**) now exhibited a variety of pleasant aromas, whereas the esters of the endo-configuration (-)-isolongifolol (**6a–e**) possessed generally no remarkable odorous properties (with the exception of **6e**). Further synthesis of esters therefore seem more promising in the exo-series. Finally the well balanced flowery cedar-woody aroma of **5b** should be emphasized. The odorous characters were summarized in Table I.

Experimental Part

The esters were prepared from the alcohols by standard methods either by reaction with the appropriate acid chlorides in the presence of pyridine or by reaction with butyl lithium and subsequent treatment with the appropriate acid chloride (Henecka, 1952). All crude products were submitted to preparative thin layer chromatography and identified by usual spectroscopic methods (IR, MS, ¹H-NMR). The odorous characters were determined by the following procedure: The compounds were dissolved in ethanol (10% solution) and paper strips were dipped into the solution. After evaporation of the solvent from the strips the scents of the compounds were evaluated.

Acknowledgement

We are indepted to Mr. W. Höppner and V. Haussmann, perfumers of Dragoco-Vienna, for the organoleptic analysis of all new compounds.

Müller P. M. and Lamparsky D. (eds.) (1991), *Perfumes Art, Science and Technology*. Elsevier Applied Science, London and New York.

Ohloff G. (ed.) (1994), *Scent and Fragrances*. Springer-Verlag Berlin Heidelberg, 84–86.

Weyerstahl P. and Krohn K. (1987), Darstellung und Reaktionen von Longicamphenilon. *Liebigs Ann. Chem.* 1125.

Zeiss H. H. and Arakawa M. (1954), The Structure of Longifolene. The Longifolic Acids. *J. Am. Chem. Soc.* **76**, 1653.